مقایسه مدلهای شبکه عصبی مصنوعی و سیستم استنتاج فازی در پیشبینی میزان بارندگی استان کردستان

thesis
abstract

پدیده بارش تابع عوامل زیادی می باشد که پیش بینی آن به روش های معمول آماری از دقت کمی برخوردار است. پیش بینی بارش با استفاده از شبکه عصبی مصنوعی و سیستم استنتاج فازی در سال های اخیر، توجه زیادی معطوف شده است. استان کردستان با مساحتی حدود 28203 کیلومتر مربع بین 34 درجه و 45 دقیقه تا 36 درجه و 28 دقیقه عرض شمالی و 42 درجه و 31 دقیقه تا 48 درجه و 16 دقیقه طول شرقی به دلیل ریزش جوی زیاد یکی از پرآب ترین استان های کشور به شمار می رود. در این پژوهش کارایی مدل شبکه عصبی مصنوعی و سیستم استنتاج فازی براساس داده های ماهانه دوره آماری موجود که 70 درصد برای آموزش و 30 درصد آن برای آزمایش از مدل شبکه عصبی پرسپترون چند لایه با تابع محرک تاتژانت سیگموئید و الگوریتم لورنبرگ-مارکوات استفاده شده است. در ادامه با توجه به معیارهای آماری ضریب همبستگی و ضریب ناش بین داده های مشاهداتی و پیش بینی شده بطور مقایسه ای مورد ارزیابی قرار گرفته است که رطوبت نسبی و دما در تمامی ایستگاه ها بیشترین تأثیر را داشته است. یافته ها بیانگر عملکرد بالاتر شبکه عصبی مصنوعی نسبت به سیستم استنتاج فازی در پیش بینی بارش استان می باشد.

similar resources

پیش‌بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی ‌بر مبنای هوش مصنوعی، اغلب برای پیش‌بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش‌بینی‌ها1 (ESP) و تفکیک مدل‏سازی برای متغیرهای اقلیمی‌و هیدرولوژیکی، از مدل‏های مفهومی ‌برای پیش‌بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می‌شود. سیستم استنتاج فازی برای پیش‌بینی بار...

full text

پیش‌بینی خشکسالی با بکار‌گیری از مدل‌های شبکه عصبی مصنوعی و سیستم استنتاج عصبی‌-‌ فازی تطبیقی در حوزة مُند استان فارس

   امروزه خشکسالی یک معضل جدّی و گریبانگیر دربسیاری از کشور­های جهان است؛بنابراین پیش­بینیِ آن از اهمیت به‌سزایی برخوردار می­باشد. در این تحقیق، کارایی شبکة عصبی مصنوعی و سیستم استنتاج عصبی­- ­فازیتطبیقی به عنوان روش­هایی مؤثر برای پیش­بینی شدت خشکسالی حوزة "مُند" استان فارس مورد بررسی قرار گرفت. برای این منظور از داده­های بارندگی ماهانة ایستگاه باران‌سنجی تنگاب استان فارس با دورة آماری 32 ساله اس...

full text

مقایسه کاربرد شبکه عصبی مصنوعی (ANN) با سیستم استنتاج فازی (FIS) در پیش بینی جریان رودخانه زاینده رود

یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدل‌سازی سیستم‌هایی که دارای پیچیدگی زیاد یا عدم‌صراحت بوده و یا داده‌های کافی از آنها موجود نیست، استفاده از تئوری مجموعه‌های فازی و شبکه عصبی مصنوعی می‌باشد. مزیت اصلی این تکنیک‌ها نسبت به روش‌های رایج این است که در مدت زمان نسبتاً کوتاهی قادر به بررسی تأثیر انواع پارامترهای در دسترس، بر فرآیند مورد بررسی می‌باشند بدون آنکه در هر مرتبه نیاز به یافتن...

full text

ارزیابی قابلیت مدل‏ های سیستم استنتاج فازی-عصبی تطبیقی، شبکه عصبی مصنوعی و رگرسیونی در تحلیل منطقه ‏ای سیلاب

سابقه و هدف: توسعه روش‏های برآورد فراوانی منطقه‏‏‏ ای سیلاب در مناطق فاقد ایستگاه‏‏ های اندازه‏گیری یکی از اولین اهداف اصلی در مسایل روز هیدرولوژی می‏ باشد. ارزیابی فراوانی سیلاب در حوضه‏ های فاقد ایستگاه‏های اندازه‏ گیری، معمولاً توسط ایجاد روابط مناسب آماری (مدل‏ها)بین سیلاب و ویژگی‏های فیزیکی حوضه انجام می‏ گیرد. تاکنون معادلات متعددی در زمینه برآورد دبی سیلاب در مناطق مختلف از جمله حوضه کرخه...

full text

مقایسه توانایی پیش بینی مدل های شبکه عصبی مصنوعی (ANN)، سیستم استنتاج عصبی- فازی انطباقی(ANFIS) و تبدیل موجک-عصبی: قیمت سبد نفت خام اوپک

پیش بینی قیمت نفت خام از مهم ترین موضوعات فرا روی اقتصاد انرژی است. پیش بینی مناسب قیمت نفت و آن هم قیمت نفت خام اوپک، به دلیل درگیر بودن تعدادی از کشورهای در حال توسعه این سازمان با قیمت نفت، می تواند در برنامه ریزی های سازمان و کشورهای عضو آن، اهمیت ویژه ای داشته باشد. برآورد و پیش بینی روند قیمت نفت، به خاطر نبود داده های تاریخی مهم و محدودیت اطلاعات مرتبط با شاخص های موثر بر روند قیمت نفت، ...

full text

پیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدل‏سازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدل‏های مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه زابل - دانشکده کشاورزی و منابع طبیعی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023